The New Implementation methodology of FPGA

Dylan Wang
DSP Builder System Level Design Flow

Development
- System Level Simulation of Algorithm Model
 - Algorithm-level Modeling
 - MATLAB/Simulink

Implementation
- RTL Implementation
 - Synthesis, Place & Route, RTL Simulation
 - Quartus II, ModelSim

Verification
- System Level Verification of Hardware Implementation
 - System-level Verification
 - Altera Development Kits

MATLAB/Simulink
Quartus II, ModelSim
Altera Development Kits
DSP Builder System Level Design Flow

Development
- System Level Simulation of Algorithm Model

Implementation
- RTL Implementation
- RTL Simulation

Verification
- System Level Verification of Hardware Implementation

Algorithm-level Modeling
- MATLAB/Simulink

Synthesis, Place & Route, RTL Simulation
- Quartus II, ModelSim

System-level Verification
- Altera Development Kits
Altera Blockset Libraries

- **DSP Builder Advanced Blockset**
 - is **High Level Synthesis** Design
 - Constraint driven design
 - Abstracted, generic build blocks
 - Single data path logic system clock
 - Automatic pipelining and register balancing
 - High data rate support
 - Floating point support
 - Tool creates the optimized h/w implementation

- **DSP Builder Standard Blockset**
 - is **WYSIWYG** design
 - Structural design
 - Hardware-like building blocks
 - Multiple clock domain design
 - User HDL and DSP IP import
 - Hardware Co-simulation
 - Enables fine-grain control of h/w implementation
Components in system use different interfaces to communicate (some standard, some non-standard)

Typical system requires significant engineering work to design custom interface logic

Integrating design blocks and intellectual property (IP) is tedious and error-prone
Automatic Interconnect Generation

- Avoids error-prone integration
- Saves development time with automatic logic & HDL generation
- Enables you to focus on value-add blocks

Qsys improves productivity by automatically generating the system interconnect logic.
Introducing Qsys
OpenCL (Open Computing Language) Overview

- **Software programming model:**
 - C/C++ API for host program
 - OpenCL C for acceleration device

- **Provides increased performance with hardware acceleration**
 - CPU offload to appropriate accelerator
 - Local Memory
 - Explicit Parallelism
 - Task (SMT)
 - Data (SPMD)

- **Open, royalty-free, standard**
 - Managed by Khronos Group
 - Altera active member
 - Conformance requirements
 - V1.0 is current reference
 - V2.0 is current release
 - http://www.khronos.org
Heterogeneous Platform Model

OpenCL Platform Model:
- Host Memory
- Global Memory
- Host
- Device
- Device

Example Platform:
- x86
- PCIe

© 2014 Altera Corporation—Confidential
main() {
 read_data(...);
 manipulate(...);
 clEnqueueWriteBuffer(...);
 clEnqueueNDRange(..., sum,...);
 clEnqueueReadBuffer(...);
 display_result(...);
}

__kernel void sum
(__global float *a,
 __global float *b,
 __global float *y)
{
 int gid = get_global_id(0);
 y[gid] = a[gid] + b[gid];
}
What happens in future

- Frame work + core processing
- Auto HDL code generating
- Design based on prototype tools and diagram
- Have the chip design without deeply understanding of the device
Thank You